adi888 [ Pretorianin ]
Matma
ostrosłup prawidłowy trójk. ma wys 10 przekrój zawierający krawędź bocz. i wys. przeciwległej ściany bocznej ma pole 15pierwiastków3 . Oblicz objętość graniastosłupa HELP
barcio321 [ Konsul ]
nikt na tym forum nie przekorczyl wiedzy z podstawowki nie masz na co liczyc xD
adi888 [ Pretorianin ]
No dobra jestem stary i głupi. Dawniej takich rzeczy nie uczono. A berbeć łazi i beczy.
Meremres [ Pretorianin ]
"No dobra jestem stary i głupi. Dawniej takich rzeczy nie uczono. A berbeć łazi i beczy."
Raczej młody i kłamliwy.
adi888 [ Pretorianin ]
Meremres--------> a powiedz większy wstyd żeby dorosły informatyk który miał matmy po czoło nie wiedział takiej rzeczy niż ten co ma to aktualnie? (a wiem że mój nie uważa na lekcjach)
Taal [ Centurion ]
Pole podanego przekroju to połowa iloczynu wysokości bryły i wysokości trójkąta w podstawie.
15*sqrt(3)=10*h/2 - gdzie h to wysokość trójkąta z podstawy. Wysokość trójkąta równobocznego (tego z podstawy, bo bryła jest prawidłowa) jest wyrażona wzorem a*sqrt(3), gdzie a to długość krawędzi trójkąta. Z tych dwóch kawałków możemy wyliczyć długość krawędzi podstawy, a więc jej pole wyrażone wzorem a^2*sqrt(3)/4. Objętość ostrosłupa to 1/3 objętości graniastosłupa o takiej samej podstawie i wysokości (czyli 1/3 iloczynu tychże).
(przy założeniu, że chodziło o ostrosłup, bo w zadaniu pojawia się także jakiś graniastosłup)
pajkul [ Generaďż˝ ]
Wysokość trójkąta równobocznego (tego z podstawy, bo bryła jest prawidłowa) jest wyrażona wzorem a*sqrt(3), gdzie a to długość krawędzi trójkąta.
a nie a*sqrt(3)/2 ?