GRY-Online.pl --> Archiwum Forum

Mam mala prosbe

21.03.2005
16:39
smile
[1]

Dukke [ Pretorianin ]

Mam mala prosbe

Szukam ludzi ktorzy pomogli by mi , a mianowicie chodzi mi oto ze mam pare zadan do wyliczenia z matematyki . Bo ja za dobry nie jestem, jak bylbys ktos chetny mi pomoc bylbym wdzieczny .Z gory dzieki za wszelka okazana mi pomoc
Moje gg 3240683

21.03.2005
16:40
smile
[2]

grzesiek16 [ Feluś ]

Napisz je tutaj :]

21.03.2005
16:51
[3]

Dukke [ Pretorianin ]

Zad 1.
Rozwiaz rownanie
a)2x2-3x-20=0
b)-5x2+7x-2=0

Zad2
Sprowadz funkcje y=4x2-5x+1 do postaci kanonicznej

Zad3
W trojkacie prostokatnym dana jest dlugosc przeciwprostokatnej c=12 i miara kata a=30 stopni (nie wiem jak napisac stopnie) .Oblicz dlugosc przyprostokatnych.

Z gory dzieki

Zad4
Wyznacz rownanie prostej przechodzacej przez punkt A=(-2:3) i rownoleglej do prostej 2x+3y=1

21.03.2005
16:58
[4]

grzesiek16 [ Feluś ]

to są funkcje kwadratowe ? to 2x2 to jest 2x do kwadratu? Jeśli nie wiesz, to zapisuje się to 2x^2 - zaraz podam Ci rozwiązania

21.03.2005
17:02
[5]

Dukke [ Pretorianin ]

Tak , tylko nie wiedzialem jak to zapisac przy x - ach sa kwadraty

21.03.2005
17:11
[6]

grzesiek16 [ Feluś ]

na razie równania:
a) f(x) = 2x^2 - 3x - 20
delta = 9 + 160 = 169
pierw z delty = 13
x1 = (3 - 13)/4 = -2,5
x2 = (3 + 13)/4 = 4

b) f(x) = -5x^2 + 7x - 2
delta = 49 - 40 = 9
pierw z delty = 3
x1 = (-7 - 3)/(-10) = 1
x2 = (-7 + 3)/(-10) = -0,4

21.03.2005
17:26
[7]

grzesiek16 [ Feluś ]

Postać kanoniczna f(x) = 4x^2 - 5x + 1
delta = 25 - 16 = 9
pierw z delty = 3

postać kanoniczna (wzór ogólny) : a(x - p)^2 + q, gdzie p = -(b/2a), a q = -(delta/4a)
stąd nasze p = -(-5/8) = 0,625 a q = -(3/16) = -0,1875
i
f(x) = 4(x - 0,625) + 0,1875


I rysunek pomocniczy do następnego zadania --->

21.03.2005
17:28
[8]

grzesiek16 [ Feluś ]

Pamiętaj, żeby dopisać stopnie :]


sin30 = 1/2
w naszym przypadku sin30 = a/12,czyli
a/12 = 1/2 //*12
a = 6


sin60 = 1/2 pierw z 3
w naszym przypadku sin60 = b/12, czyli
b/12 = 1/2 pierw z 3 //*12
b = 6pierw z 3

21.03.2005
17:31
smile
[9]

grzesiek16 [ Feluś ]

A = (-2,3)
Równanie prostej równoległej do 2x + 3y = 1 ma postać f(x) = -(2/3)x + b ---> współczynnik przy X musi być taki sam, by proste były równoległe. Teraz podstaw do powyższego równania współrzędne punktu A x=-2 i y=3 by obliczyć "b" i masz:
3 = -(2/3)*(-2) + b
3 = 4/3 + b
b = 5/3

czyli równanie szukanej prostej ma postać
y = -(2/3)x + 5/3

Zadania robione na szybko, więc może wkraść się jakiś niepożądany błąd. Radzę pouczyć się trochę matmy, to nie boli :]

21.03.2005
17:33
[10]

Dukke [ Pretorianin ]

Dzieki za pomoc i za dobra rade .Wielkie dziex

© 2000-2025 GRY-OnLine S.A.